US 2002/0100017 A1l

(the arrows labeled three (5) and four (,)). Via the tables in
the activation context 302, the runtime version-matching
mechanism 500 will either return (e.g., as a return parameter,
with the arrow labeled five (5)) the path and filename of the
version-specific assembly, or a not-found status or the like
(and/or the path and filename of the default file) to the
activation API that called it, in which case the activation API
will load the default assembly. As represented in FIG. § by
the arrows labeled six (6) through eight (8), the activation
API 300, accesses the assembly cache 212 to load the
correct version of the assembly. Note that alternatively, the
runtime version-matching mechanism 500 may access the
assembly cache 212 on behalf of the calling API 300, to
obtain and/or load the correct version, which is either the
one listed in the records or the default version if none was
found. Further, note that privatized assemblies may be
loaded from the application directory. In any event, the
correct assembly version 510 is loaded and the activation
API 300, returns from the call to the application 200, (the
arrow labeled nine (9)), and the application can use the
loaded assembly 510 (the arrow labeled ten (10)).

[0083] Turning to an explanation of the operation of the
present invention with particular reference to the flow dia-
grams of FIGS. 6-7 and 9, as described above, the mapping
of an application to a specified version of an assembly or
other data structures essentially comprises two phases, an
initialization phase in the first alternative mode (FIGS. 6-7)
and a runtime phase (FIG. 9). In general, the initialization
phase constructs the activation context, if needed, that maps
version-independent assemblies to version-specific assem-
blies based on the dependencies and other instructions
provided in the various manifests and configurations. Then,
during a runtime phase, (FIG. 9), the activation context is
accessed as needed to rapidly locate and load the appropriate
versions when an application requests an assembly to which
it needs to be bound.

[0084] FIGS. 6-7 represent example steps that may be
taken in the first alternative mode during the initialization
(pre-application execution) phase to construct the activation
context, if needed. When creating a new process, the bind-
ing/initialization mechanism 304 (e.g., of the operating
system) checks for an application manifest in same file
system directory as the calling executable, as represented in
FIG. 6 by step 600. If an application manifest does not exist,
the binding/initialization mechanism 304 handles its
absence in another manner, (step 602), e.g., the operating
system may search for it, download it, and/or essentially
give the application default versions during runtime, such as
by first loading any requested assembly from the applica-
tion’s own directory when one is present, and otherwise
using the default assemblies from the assembly cache.

[0085] When step 600 determines that an application
manifest exists, the binding/initialization mechanism 304
(FIG. 3) preferably branches to step 610 to create the
activation tables. Alternatively, if activation contexts may be
preserved rather than recomputed each runtime, the binding/
initialization mechanism 304 may check for an existing
activation context (e.g., 302) for the application. If an
existing activation context is found, step 604 branches to
step 606 to validate it, otherwise step 604 branches to step
610. Step 606 checks the activation context to determine if
it is coherent with current configuration, and if so, the
existing activation context 302 can be used (step 608) and

Jul. 25, 2002

the initialization process ends. If alternatively the activation
context 302 is not coherent with current configuration at step
606, for example, because a more recent configuration has
been provided to the system, the initialization process con-
tinues to step 610 to recompute a new activation context
302.

[0086] Inthe event that the initialization process continues
to step 610 to create the activation context, step 610 repre-
sents obtaining the binding information from the application
manifest. Steps 610, 612, 614 and 616 of FIG. 6 are
executed, along with the steps of FIG. 7, essentially to walk
through the application manifest, configurations and any
assembly manifests in order to build up a dependency graph,
including replacing assembly information (e.g., maintained
as nodes in the graph) according to configurations in the
dependency graph and adding any new nodes to include the
dependencies of any assembly manifests.

[0087] By way of example, FIG. 7 operates once the
application manifest has it dependent assemblies added to
the dependency graph (step 610 of FIG. 6) and a requested
assembly version (node) therein has been selected (step 612,
e.g., via a top-down, left-to-right or other suitable progres-
sion) for processing.

[0088] At step 700, a test is performed to determine
whether the assembly has a publisher configuration associ-
ated therewith, e.g., in the global assembly cache. If not, step
700 branches ahead to test for an application configuration
at step 706, described below. If a publisher configuration is
found at step 700, step 700 branches to step 702 wherein the
publisher configuration is interpreted to determine whether
there is an instruction therein for replacing the assembly
version that is currently under evaluation, i.e., the one
currently selected in the dependency graph either as origi-
nally specified in the manifest. If a replacement instruction
is found, step 702 branches to step 704 wherein a depen-
dency graph is altered to reflect the replacement, otherwise
step 702 effectively bypasses step 704. By way of example,
FIG. 8 shows a dependency graph 800 in which a node
representing an assembly, such as the node N1, has been
replaced by a node N2. Note that a list or other data structure
may be used instead of a dependency graph.

[0089] At step 706, a test is performed to determine
whether the application has an application configuration
associated therewith, e.g., in the application directory. If an
application configuration is found at step 706, step 706
branches to step 708 wherein the application configuration is
interpreted to determine whether there is an instruction
therein for replacing the assembly version that is currently
under evaluation, i.e., currently selected in the dependency
graph by identification in the manifest or as overridden by
the publisher policy. If such a relevant replacement instruc-
tion is found, step 708 branches to step 710 wherein the
dependency graph is altered to reflect the replacement.

[0090] At this time, the appropriate assembly version is
known, as specified in the manifest and as altered via any
configuration instructions, as described above. Step 712
enumerates any dependencies in the assembly manifest that
corresponds to this appropriate assembly, e.g., to add depen-
dent nodes to the dependency graph. Note that if an assem-
bly representation (node) is already in the graph for a given
assembly, a pointer from the node may be added to show the
dependency rather than place a new node in the dependency



